
Please Call Later...
Part 3 of a series on using Windows and BDE callbacks
by Brian Long

Having checked out some of the
BDE’s callback capabilities in

the last issue, let’s move on to the
Windows ToolHelp library.

One of its APIs sets up a callback
to be called whenever certain
notifications are generated. There
are a variety of notifications, such
as programs exiting, invalid API pa-
rameters being passed and debug
strings being issued. The full run
down can be found by looking at
the online help for NotifyRegister.

For the example on this month’s
disk (NOTIFY.DPR), we will focus
on catching debug strings, parame-
ter validation errors and general
API errors. It should be noted at
this point that the Win32 API does
not support these notification call-
backs – this is 16-bit only. However,
there is some mileage for this
program even in these enlightened
days of Windows 95. Firstly, many
of us are not only still running
16-bit applications but also devel-
oping them and so notifications
will still be generated. Also, many
Windows 95 APIs thunk down to
16-bit equivalents and so we may
get a sniff of a notification from a
32-bit application anyway.

To register a notification call-
back we call NotifyRegister (which
is declared in the ToolHelp unit)
and to un-register it we call
NotifyUnRegister. These APIs are
called in the initialization section
and an exit routine respectively of
your form unit (see NOTIFYU.PAS
in Listing 1).

Whenever a notification hap-
pens in the system, the callback is
triggered and passed two pieces of
information: a notification code
and a long integer parameter
whose meaning depends on the
notification. If the notification
represents a debugging string, the
long integer is a PChar which points
to the string. If the notification
occurred because of an API failure,
the extra parameter is a pointer to

a TNfyLogError structure, whose
only useful value is another code
specifying what caused the failure.
If it is a parameter validation notifi-
cation we get a TNfyLogParamError
record, which similarly contains an
identification code, but also an
address inside the API which
objected to the parameter, along
with the bad value itself.

The notification handler itself
doesn’t do much except increment
a notification counter (which is
written to the screen periodically
by a timer) and check that the
notification received is one we are
interested in. If it is not, the code
exits immediately. If it is, it saves
the task handle of the task in which
the notification happened, and
then sends a message to the form
(causing a task switch and ensur-
ing the data segment is set up okay
for any code to execute) passing
along the id code and the addi-
tional long integer. The message
handler then adds an entry to the
form’s list box, describing the
cause of the notification.

Since there are many possible
causes for general API errors and

API parameter errors, the routines
which parse the information for
these two notifications are in a
separate unit (NFYUTIL.PAS, see
Listing 2). In short they do a look-
up and generate a descriptive
string which is added to the list
box. However they also identify the
executable file name of the task
which was running using a couple
of additional ToolHelp APIs, to
make the text more informative.

There is a button on the form
which tests how well the notifica-
tions are being trapped. It issues a
debug string using the API call
OutputDebugString, calls SetMenu
twice, once with a bad window
handle (0) and once with a bad
menu handle ($9876) and then asks
16-bit Windows to allocate more
memory than it can offer (approxi-
mately 100Mb).

NOTIFY.EXE is shown running in
Windows 95 in Figure 1 and in
Windows 3.11 Debug Version in
Figure 2. The first screen shot was
taken after running ReportSmith,
loading the CROSST.RPT report,
closing ReportSmith and pressing
the Test button on the Notify

➤ Figure 1

32 The Delphi Magazine Issue 6

program’s form. You’ll notice that
there are nearly two thousand
notifications generated by doing
this. Most are sent as Windows
loads segments of various modules
that ReportSmith needs, but quite
a few are generated for API errors
of one description or another, as
shown. The screen shot from the
debugging version of Windows 3.11
doesn’t include any ReportSmith
information – I couldn’t get
ReportSmith to successfully load
under that operating environment.
However, even by just pressing the
Test button you can see that
Windows generates debug strings
representing the parameter valida-
tion errors and general API errors
that occur. It generates them with
more detail than our project alone
can do: it tells you which API had
an invalid parameter.

It is possible to extend our
program to find this information
out, even in retail Windows. We are
given the failure address and in

unit Notifyu;
{$ifdef WIN32} ’This is Windows 3.x-specific {$endif}
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls,
 ExtCtrls, ThunkU;
const wm_DoNotification = wm_User + 65;
type
 TForm1 = class(TForm)
 Panel1: TPanel;
 ListBox1: TListBox;
 TestBtn: TButton;
 Label1: TLabel;
 NumNfysLbl: TLabel;
 Timer1: TTimer;
 procedure TestBtnClick(Sender: TObject);
 procedure Timer1Timer(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 procedure WMDoNotification(var Msg: TMessage);
 message wm_DoNotification;
 public
 end;
var Form1: TForm1;

implementation
uses ToolHelp, NfyUtil;
{$R *.DFM}
const NumNfys: Longint = 0;

function NotifyFunction(wID: Word; dwData: Longint):
 Bool; export;
begin
 Result := False;
 Inc(NumNfys);
 if not (wID in [nfy_OutStr, nfy_LogError,
 nfy_LogParamError]) then
 Exit;
 ProblemTask := GetCurrentTask;
 SendMessage(Form1.Handle, wm_DoNotification,
 wID, dwData);
end;

procedure TForm1.TestBtnClick(Sender: TObject);
begin
 OutputDebugString(’Hello world!’);
 SetMenu(0, 0);
 SetMenu(Handle, $9876);
 GlobalAlloc(0, 100000000);
end;

procedure TidyUp; far;
begin
 NotifyUnregister(GetCurrentTask);
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 NumNfysLbl.Caption := IntToStr(NumNfys);
end;

procedure TForm1.WMDoNotification(var Msg: TMessage);
begin
 with Msg, Listbox1.Items do
 case WParam of
 nfy_OutStr: Add(DoString(LParam));
 nfy_LogError: Add(DoLogError(LParam));
 nfy_LogParamError: Add(DoLogParamError(LParam));
 end;
end;

var NotifyFunctionThunk: TFarProc;

procedure TForm1.FormCreate(Sender: TObject);
begin
 if DebuggerRunning then
 MessageDlg(
 ’Debugger active, some notifications will be lost’,
 mtWarning, [mbOk], 0);
end;

initialization
 NotifyFunctionThunk :=
 NewMakeProcInstance(@NotifyFunction, HInstance);
 NotifyRegister(GetCurrentTask,
 TNotifyCallBack(NotifyFunctionThunk), nf_Normal);
 AddExitProc(TidyUp);
end.

➤ Listing 1

➤ Figure 2

theory can work backwards to find
which module owns the code
segment in the address and then
which API lives at that address.
Unfortunately in practice it is
rather complicated: you have to do
a lot of low-level mucking about
with data structures both docu-
mented and undocumented, since
there are no convenient APIs to do
it for you. I suspect it is not worth
going through the drudgery,
particularly given the impact of
Windows 95, where notifications

are gone. However, if there is
sufficient demand for this I will
cover it in a later article.

Similarly, it is feasible to wrap
this sort of stuff into a component
which can be used for debugging
purposes. The component can
notice a notification error, walk the
stack to find which application
function passed the wrong API
parameter and raise an exception
at that point. But again, stack
tracing and all that goes with it to
produce such a component is

February 1996 The Delphi Magazine 33

unit NfyUtil;
interface
uses WinTypes;
var ProblemTask: THandle;
function DoString(Str: Longint): String;
function DoLogError(Block: Longint): String;
function DoLogParamError(Block: Longint): String;
function DebuggerRunning: Boolean;

implementation
uses ToolHelp, SysUtils, WinProcs;
var
 TaskEntry: TTaskEntry;
 ModuleEntry: TModuleEntry;

function DoString(Str: Longint): String;
var Loop: Byte;
begin
 Result := StrPas(PChar(Str));
 if Length(Result) > 0 then
 for Loop := Length(Result) downto 1 do
 if Result[Loop] in [#10, #13] then
 Delete(Result, Loop, 1);
end;

function DoLogError(Block: Longint): String;
begin
 with PNfyLogError(Block)^ do begin
 case wErrCode of
 { SEE FILE NFYUTIL.PAS ON DISK FOR DETAILS }
 end;
 TaskEntry.dwSize := SizeOf(TaskEntry);
 TaskFindHandle(@TaskEntry, ProblemTask);
 ModuleEntry.dwSize := SizeOf(ModuleEntry);
 ModuleFindHandle(@ModuleEntry, TaskEntry.hModule);
 Result := Format(’Error: %s in %s’, [Result,
 ExtractFileName(StrPas(ModuleEntry.szExePath))]);
 end;
end;

function DoLogParamError(Block: Longint): String;
const
 MsgType: array[False..True] of String[7] =

 (’error’, ’warning’);
var BadParam: Longint;
begin
 with PNfyLogParamError(Block)^ do begin
 case wErrCode of
 { SEE FILE NFYUTIL.PAS ON DISK FOR DETAILS }
 end;
 case (wErrCode and err_Size_Mask) of
 err_Byte: BadParam := Byte(lpBadParam);
 err_Word: BadParam := Word(lpBadParam);
 err_DWord: BadParam := Longint(lpBadParam);
 end;
 TaskEntry.dwSize := SizeOf(TaskEntry);
 TaskFindHandle(@TaskEntry, ProblemTask);
 ModuleEntry.dwSize := SizeOf(ModuleEntry);
 ModuleFindHandle(@ModuleEntry, TaskEntry.hModule);
 Result := Format(’Parameter %s: %s $%x in %s’,
 [MsgType[wErrCode and err_Warning <> 0], Result,
 BadParam, ExtractFileName(
 StrPas(ModuleEntry.szExePath))]);
 end;
end;

type
 PDebugRec = ^TDebugRec;
 TDebugRec = record
 dhMagic1, dhZero, dhMagic2, dhHookProc,
 dhDebugHooked: Longint;
 dhKind: Word; { Use TExceptionKind enumerated type above }
 dhAddr, dhCookie, dhNameLen, dhName, dhMsgLen,
 dhMsg, dhWantException, dhDoneExcept: Longint;
 end;
const
 DebuggerHook = $24; { Offset in DS of pointer to debugger data }

function DebuggerRunning: Boolean;
begin
 Result := (PrefixSeg <> 0) and
 (LoWord(PDebugRec(Ptr(DSeg,
DebuggerHook)^)^.dhDebugHooked) <> 0);
end;
end.

➤ Listing 2

rather messy. If there is demand,
we can oblige...

One thing that is worth pointing
out is that the program works best
when not under the control of a
debugger. Debuggers use notifica-
tions to identify when programs
are starting and stopping and when
code segments are discarded and
reloaded. Consequently they use a
notification callback. However,
many notifications are not passed
on and so you don’t see debug
strings and several others
(although this does not affect the
parameter validation or general
API error notifications). Where
Figure 1 shows over 1900 notifica-
tions when run outside the debug-
ger, the same steps taken with
NOTIFY.EXE being run within the
debugger cause a rather smaller
350 notifications to be reported.
The debugger has swallowed over
1600 of them.

To help warn of the problem, I
have called DebuggerRunning from
NFYUTIL.PAS in the OnCreate event

handler for the form’s, which
checks if the program is running
under the debugger. If it is, it puts
up a message box reminding us of
that fact. The way we can identify
if the debugger has its hooks into
us is to check a field in the debug-
ger interface record, which is
stored somewhere in the data
segment of an application, though
not of a DLL (hence the check for
PrefixSeg, which is 0 in a DLL). The
address of the record is stored at
offset $24 in the data segment, and
the layout of it is given in two files
in the \DELPHI\SOURCE\RTL\SYS
directory (providing you have the
source code, of course): EXCP.ASM
and SE.ASM.

The idea is to check the low word
of the dhDebugHooked field, which
will be non-zero if the debugger is
active. In Listing 4 I’ve used a rather
more cryptically coded version of
the test (see later).

The other ToolHelp callback is
designed for catching interrupts or
exceptions. InterruptRegister and
InterruptUnRegister allow us to
install and remove a callback

which is triggered when one of a
certain number of interrupts oc-
curs (see the online help for full
details). There is a problem here in
that, like the notification handler,
only one such callback can be
installed per task. Nothing wrong
with that, you might think, until
you realise that the SysUtils unit
installs one of these callbacks in
order to trap such errors as
General Protection Faults, so it can
turn them into the less severe
Delphi software exceptions we
know and love. It is possible to
remove this callback by calling:

EnableExceptionHandler(False);

but this then suggests we have to
take the trouble of re-implementing
all the handling it was doing. A
better idea is to hook into this call-
back, using a mechanism designed
for just this purpose (though not
documented). Inside the interrupt
callback in SysUtils, the code
checks a system-defined pointer
called ProcessorExceptHook. If it is
not nil, it jumps to the specified

34 The Delphi Magazine Issue 6

➤ Figure 3

address. We can set this pointer to
point to a routine in our form unit
and do what we wish to do there.
The function type which needs
to be used for your routine is
defined in the SysUtils unit as
TFaultHandler, which returns a
value of type TFaultResponse, an
enumerated type. Listing 3 is a
snippet from SysUtils.

The function you set up has a
number of options for terminating,
as per the InterruptRegister online
help. It can terminate the applica-
tion, resume execution at the of-
fending instruction (which rather
assumes you have fixed the prob-
lem that caused the exception in
the first place) or chain onto the
default exception handler which
Windows provides.

Another possibility is to do what-
ever Delphi would have normally
done (ie turn the hardware
exception into a software excep-
tion, causing the usual dialog
message to appear). This can be
achieved by calling a procedure
DefaultExceptHandler and passing
the exception number (fault id)
and fault address.

{ Fault handler response }
 TFaultResponse = (frKill, frResume, frChain);
{ Fault handler function type }
 TFaultHandler = function(FaultID: Word;
 FaultAddress: Pointer): TFaultResponse;
{ Processor exception hook }
const
 ProcessorExceptHook: TFaultHandler = nil;

➤ Listing 3

unit Intruptu;
interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 GPFBtn: TButton;
 DivByZeroBtn: TButton;
 procedure FormCreate(Sender: TObject);
 procedure GPFBtnClick(Sender: TObject);
 procedure DivByZeroBtnClick(Sender: TObject);
 private
 { private declarations }
 public
 { public declarations }
 end;
var
 Form1: TForm1;

implementation
uses
 IntrupU2;
{$R *.DFM}

function IntHandler(FaultID: Word;
 FaultAddress: Pointer): TFaultResponse; far;
begin
 Result := frKill;
 with TActionFrm.Create(Application) do
 try
 Label1.Caption := Format(’Exception %d at %p’,
 [FaultID, FaultAddress]);
 case ShowModal of
 100: Result := frKill;
 101: Result := frResume;

 102:
 if Bool(PrefixSeg) and
 Bool(PWordArray(MemL[DSeg:36])^[8]) then
 MessageDlg(’Do not choose this option ’ +
 ’whilst the debugger is active - in ’ +
 ’Windows 3.x you will drop to DOS; in ’ +
 ’Windows 95 you will hang the system. ’ +
 ’Terminating application instead’,
 mtError, [mbOk], 0)
 else
 Result := frChain;
 else
 DefaultExceptHandler(FaultID, FaultAddress);
 end;
 finally
 Free;
 end;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 ProcessorExceptHook := IntHandler;
end;

procedure TForm1.GPFBtnClick(Sender: TObject);
begin
 Mem[0:0] := 0;
end;

procedure TForm1.DivByZeroBtnClick(Sender: TObject);
const
 F: Byte = 0;
begin
 F := F div F;
end;
end.

➤ Listing 4

The sample project which
implements a processor exception
hook routine is on the disk as
INTRUPT.DPR and the source for
the main form’s unit is in Listing 4.

When you run it, it presents two
buttons which generate excep-
tions. The first one causes a GPF by

trying to access memory that
doesn’t belong to it and the second
causes a divide by zero exception
by dividing a number by zero. In
order to hook the exception, the
form’s OnCreate handler assigns a
custom routine, named IntHandler,
to ProcessorExceptHook. When

February 1996 The Delphi Magazine 35

IntHandler is invoked, from the
interrupt callback in SysUtils upon
an exception occurring, it launches
another form (see Figure 3) which
gives the user a choice of actions.
Depending on the action chosen,
the form returns one of the three
fault response values or calls
DefaultExceptHandler.

To determine which button on
the second form was pressed, each
one has a different ModalResult
property value. When buttons with
non-zero ModalResult values are
pressed on a form launched with
ShowModal, they close the form and
cause ShowModal to return their
ModalResult value. The case state-
ment in IntHandler checks for each
value and performs its appropriate
action.

One special case worth mention-
ing is the chain response. When
you chain onto the default excep-
tion handler, Windows draws the
white system modal message box,
giving you the chance to close the
application or ignore the problem.
If your application is running under
the debugger, trying to close the

application has dire conse-
quences. In Windows 3.x Windows
will drop straight to DOS, losing all
unsaved data. In Windows 95, when
you push the offered button
marked Shut Down, the whole
system will freeze forcing a reboot.
The code in IntHandler checks for
the debugger using the logic
discussed above and if it finds
a compromising situation, elects
to take a safe option instead,
terminating the application.

Having done normal callbacks,
inter-task callbacks (including BDE
callbacks) and now interrupt level
callbacks we have at last covered
all the ground (except for real
mode callbacks that I mentioned in
the first article, but I’m avoiding
those).

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

36 The Delphi Magazine Issue 6

